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ABSTRACT 

Powertrain system design and integration for ground vehicles is often accomplished 

using a dynamic simulation to evaluate vehicle performance. This paper applies modern multi-

disciplinary design, analysis, and optimization methods to facilitate powertrain system design 

through dynamic simulation analysis. A collection of surrogate modeling-based MDAO tools are 

applied to a representative powertrain example to explore the available design space, analyze the 

feasibility of system performance goals, and make decisions about systems design. Surrogate 

modeling is shown to facilitate visualization, information synthesis, and decision making in a 

highly dimensional design problem. Surrogate-based optimization is also demonstrated on the 

example powertrain design problem to uncover a Pareto frontier of design options for further 

analysis.  

 

INTRODUCTION 
In the design of a powertrain system for a ground vehicle, 

it is common to use a dynamic simulation model to assess 

the powertrain-based vehicle performance.  It is necessary to 

perform several iterations with different combinations of 

design and control variables in order seek an optimal design 

of such a system. This becomes all the more difficult when 

the detailed simulation models are composed of different 

component models, e.g., engine, transmission, cooling, and 

take considerable time to run through each iteration.  System 

designers would benefit greatly if a design exploration and 

optimization approach was available that could seamlessly 

assimilate the powertrain simulation model, run iterations in 

an automated way, and provide results for evaluation.  This 

paper presents an approach developed under contract with 

the US Army Tank Automotive Research, Development and 

Engineering Center (TARDEC) for the Advanced 

Powertrain Demonstrator Program.  The main focus of this 

paper is to demonstrate the capability available from an 

approach that can help a powertrain system designer identify 

better and balanced designs while reducing design process 

time and resources. This paper uses a simplified powertrain 

integration design problem to illustrate the application of a 

suite of modern multi-disciplinary design, analysis, and 

optimization (MDAO) methods. While not an in-depth 

analysis of any one method, the approach gives a general 

review of how MDAO might be applied in the context of the 

given problem. The background of and reasons behind each 
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method used are discussed, as well as some potential 

expansions that might be needed for increased complexity. 

The methods themselves provide a starting point for 

understanding the application of MDAO to complex 

problems, and can be tuned to a given problem as necessary. 

This is accomplished in a two-part approach for utilizing 

MDAO on the powertrain integration that will allow for an 

interactive design space exploration as well as optimization 

of the powertrain model.  

 

POWERTRAIN SYSTEM DESIGN 
The powertrain system design problem under 

consideration involves exploring the design space to identify 

a powertrain solution that best meets vehicle performance 

and other design criteria.  This involves studying how 

component performance characteristics such as power 

densities (e.g., for the engine) affect the powertrain size and 

weight which then influence similar vehicle parameters that 

affect the vehicle powertrain-based mobility performance.   

The design exploration capability allows one to explore 

upfront and understand, for example, the net effect of 

improvement in an individual component performance 

versus their overall system integration burden.    

 

MULTI-DISCIPLINARY DESIGN ANALYSIS AND 
OPTIMIZATION 

 Multi-disciplinary design, analysis, and optimization 

(MDAO) is a growing field revolving around the design and 

optimization of complex systems, in which the strong 

interaction of multiple disciplines and subsystems 

necessitates the collaborative manipulation of design 

parameters throughout the system [1]. Interdisciplinary 

couplings and often a diversity of conflicting constraints and 

objectives can create a high dimensional problem that is 

difficult to navigate manually or with traditional techniques. 

The practice of MDAO involves the integration of analysis, 

optimization and decision making techniques to solve 

complex engineering problems spanning multiple disciplines 

and subsystems. The process can bridge traditional 

engineering disciplines (e.g., structures, thermal, control) as 

well as other lifecycle and economic system properties (e.g., 

cost, reliability). Utilizing advance modeling and simulation 

(M&S), MDAO has become an essential part of the design 

and analysis of complex systems, allowing decentralized 

teams to collaborate on approaches satisfying multiple, often 

conflicting, design objectives. General Dynamics, Land 

Systems (GDLS) has developed a representative dynamic 

ground vehicle powertrain representative modeling and 

simulation architecture in MathWorks® Simulink® which 

serves as the foundation for illustrating this proposed effort. 

The need for engineers to analyze and predict complex 

systems and technologies has led to the development of 

increasingly complex and accurate modeling and simulation 

tools. Surrogate models, or metamodels, are mathematical 

approximations of more computationally expensive analysis 

or experiments, build from a small, targeted number of 

evaluations over the design space. While they provide many 

benefits, surrogates are primarily designed to help relieve the 

intensive computational cost or run time of high fidelity 

analysis [2]. Design-of-Experiment (DOE) methods are 

commonly used to generate the smallest necessary sample of 

observations that can be used to build a surrogate. Once data 

is available, surrogates can be built using a multitude of 

techniques spanning various fidelities. Polynomial response 

surfaces are often the most common surrogating techniques, 

and can also be used to screen inputs for more efficient 

modeling. Other common surrogate techniques involve 

artificial neural networks, support vector machines, 

Gaussian process prediction (Kriging), and radial based 

functions. More advanced approaches may include 

multifidelity methods combining surrogates of different 

fidelities to model complex design spaces [3].  

Surrogate models have been used for a variety of analyses 

and in an assortment of industries, including the automotive 

industry [4-6]. Surrogate models can be used as an enabler to 

help designers and decision-makers explore and understand 

the design space. Because prediction runs of the surrogate 

models are so computationally inexpensive (particularly 

when compared to the time consuming modeling and 

simulation environment they represent), they can be used to 

facilitate interactive design space visualization to help 

designers identify relationships and areas of interest [6, 7]. 

In essence, they can be used as a real-time means to answer 

questions about the design space. 

Surrogates also can be used to characterize and explore 

design spaces probabilistically, using approaches like Monte 

Carlo Simulation (MCS) or Bayesian methods [4]. These 

methods can allow for design under uncertainty, accounting 

for noise variables (e.g., requirements, environment) that are 

beyond the designer’s control, as well as to illustrate the 

difficulties of achieving design goals in terms of their 

probability [5]. Design trade-offs can be conducted 

manually, by manipulating the surrogates directly to achieve 

the desired design effect, or automatically, by using them in 

concert with some optimization or other computational 

logic.  

The application of MDAO also encompasses optimization, 

and often multi-objective optimization. Designers should 

seek to thoroughly understand the nature of a design space 

and the tradeoffs that lie therein, but optimization provides 

mathematical and/or logical means to help identify 

promising solutions in complex and multi-dimensional 

problems. Multi-objective optimization is one of the central 

pillars of MDAO, and encompasses mathematical 

optimization problems that involve satisfying more than one 

objective function simultaneously (and potentially multiple 
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constraints). In most non-trivial design problems, a set of 

Pareto-optimal solutions exist, each of which represents a 

feasible option where improvement in any one objective will 

result in degradation of another. A simple example is a 

decision maker’s desire to maximize a vehicle’s payload, 

survivability, and range. However, the more payload and/or 

survivability (e.g., armor), the lower the maximum range 

will be, assuming all other variables remain constant. The set 

of all these potential solutions is referred to as the Pareto 

Frontier and is one of the simplest means to represent the 

tradeoffs a decision maker has to make. Various multi-

objective optimization methods and approaches are often 

concerned with thorough and efficient means to identify 

Pareto optimal solutions based on the decision makers’ 

preferences between objectives. 

By utilizing multi-objective optimization methods like the 

NSGA-II [8] used in the example here, a subset of Pareto 

optimal solutions can be found for the designer to explore 

and select from. Moreover, by integrating a surrogate based 

optimization approach, considerable time can be saved in the 

optimization process.  

 

APPLICATION OF MDAO TO A POWERTRAIN 
INTEGRATION PROBLEM 
 The application of MDAO methods to powertrain system 

integration for a ground vehicle is demonstrated here 

through an example design problem formulated to fit the 

time constraints of the research effort. A dynamic vehicle 

simulation including drivetrain and powertrain systems was 

developed in Simulink® and wrapped using a MATLAB® 

script to perform automated runs.  

The Simulink® model uses a scalable map based engine 

model derived from a prototype engine [9] for max engine 

powers of 750 to 1500 hp. The model accounts for vehicle 

mass, rotating mass, cooling loads, parasitic loads, driveline 

losses and road loads. The cooling load is based on 

reasonable industry values [10] and is varied with 

temperature and power according to standard fan laws. Road 

loads consist of grade, rolling resistance and drag.  A 

scalable transmission model is employed for 4 to 32 gears 

with a torque converter that is locked for all but gear 1. An 

adaptive shift strategy is employed that enables optimum 

gear shifting for performance during acceleration and for 

optimum fuel efficiency at constant speed. The engine 

volume scales with power and power density.  The 

transmission volume scales with max engine power, number 

of gear sets and a technology adjustment.  The vehicle 

weight is then adjusted assuming a fixed payload volume 

and armor size. The model also imposes a cooling penalty 

for increased engine power density.  All scaling factors and 

volumes are representative approximations based on the 

performance of ground vehicles in the weight range 

addressed in this analysis [10]. 

The design parameters used for the example problem are 

outlined in Table 1. For the generation of surrogate models 

and analysis of the design space, a dummy variable, Gear 

Ratio Range (0.0, 1.0], was created to replace Maximum 

Total Gear Ratio. It represents the remaining range between 

minimum gear ratio and maximum gear ratio and is used to 

set maximum gear ratio. In addition to the design 

parameters, several other parameters were also modeled, as 

discussed later. Note, the other parameters are represented as 

normalized values. These parameters represent potentially 

uncertain requirements (payload volume), and vehicle design 

parameters that may be fall out from other design activities 

(i.e., vehicle rough density, vehicle drag coefficient). Some, 

namely the two tech factors, are representative of potential 

improvements in technology, modeling the effect that 

advancements in technology may have on transmission 

weight and volume. While these parameters may not be 

under the designers direct and free control, they can prove 

critical in helping decision makers make informed choices. 

The design of the vehicle was based on its performance 

with respect to the objectives listed in Table 2. Each 

objective has been normalized linearly against a threshold 

goal corresponding to an objective value of 1.0. The 

feasibility of the powertrain integration design was 

considered with respect to the given goals for each objective.  

 

Primary Design Parameters 

Lower 

Bound 

Upper 

Bound Baseline 

Maximum Engine Power (hp) 750 1500 - 

Minimum Total Gear Ratio  0.20 4.0 - 

Maximum Total Gear Ratio 0.20 22.5 - 

Number of Gears 4 32 - 

Engine Power Density (normalized) 0.38 1.0 - 

Other Parameters 

Lower 

Bound 

Upper 

Bound Baseline 

Payload Volume (normalized) 0.8 1.2 1.0 

Vehicle Rough Density (normalized) 0.8 1.2 1.0 

Vehicle Drag Coefficient (normalized)  0.8 1.2 1.0 

Transmission Weight Tech Factor 0.75 1.0 1.0 

Transmission Volume Tech Factor 0.75 1.0 1.0 

 

Table 1: Vehicle Design Parameters and Ranges 
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The vehicle simulation was automated using a MATLAB 

script for expedited data collection. A simple Latin 

Hypercube Design of Experiments (DOE) was used to 

exercise the model, collecting data to train surrogate models. 

In addition to each objective, additional data was collected 

to characterize the simulation run, including final engine 

RPM, power, transmission gear, and simulation time. This 

helped to filter out simulations that did not converge, and 

further understand potential designs. The first DOE was 

performed with only the primary design parameters varied, 

and the other parameters held constant.  

The resulting data from the simulation runs turned out to 

exhibit several complex multi-modal behavior with respect 

to the modeled objectives. Traditional response surface 

models did not provide the desired model fidelity for the 

given data, and thus Kriging models with a Gaussian 

correlation function were optimized for increased model 

accuracy throughout the design range [11]. By modeling 

carefully individually modeling each objective, sufficient 

models were generated.  

 

Objective Goal 
Fuel Economy (30 mph, hot day, Primary-Road) 

(FuelEconomy_30) 
≥ 1.0 

Fuel Economy (50 mph, hot day, Primary -Road) 

(FuelEconomy_50) 
≥ 1.0 

Fuel Economy (tactical idle, hot day) 

(FuelEconomy_idle) 
≤ 1.0 

Top Speed (standard day, Primary-Road) 

(MaxSpeed_0) 
≥ 1.0 

60% Grade Speed (standard day, Primary-Road) 

(MaxSpeed_60) 
≥ 1.0 

Vehicle Weight 

(Mbtons) 
≤ 1.0 

Accel. Time (to 30 mph, standard day) 

(AccelTime_30) 
≤ 1.0 

Sprocket Power Density at Top Speed 

(SpktPowDens) 
≥ 1.0 

 

Table 2: Design Objectives 

 

Design space exploration 
Surrogate modeling immediately enables the application of 

a host of design space exploration methods and techniques 

by facilitating the quick generation of larger and specifically 

targeted data sets. The dimensionality and sheer size of this 

data can be quickly overwhelming. However, it is a problem 

which can be addressed through carefully developed design 

space visualization tools and techniques. The development 

of visualization-enabled design space exploration and the 

visualization of multidimensional problems with multiple 

objectives has become increasingly important in the design 

of complex systems [12]. The need for the visualization and 

understanding of complex multidimensional datasets is a 

growing field of interest, particularly with the emergent 

prevalence of machine learning. This has led to the 

development of a number of modern toolsets for just this 

need.  

The Python programming language has a growing list of 

open source libraries providing free access and collaborative 

development of many of the tools used here for both 

regression in surrogate modeling [13] and data analysis and 

visualization [14, 15]. The authors often rely heavily on the 

use of these libraries to collaboratively create custom design 

tools to solve complex problems.  

One such tool that can be used to explore the available 

design space is a dynamic sensitivities plot (also called a 

prediction profiler) [7]. Utilizing the surrogate models, the 

design space can be quickly queried to determine the 

individual effect of every design parameter on the 

constraints and objectives. The dynamic sensitivities chart, 

shown in Figure 1, illustrates the local sensitivity of each 

response (objective) with respect to just the design 

parameter for that column at the design point indicated. This 

essentially shows each of the partial derivatives at a given 

design point. The designer can then interactively drag the 

vertical red lines to change design parameters and explore 

the design space using this tool. 

In Figure 1 the designer can see a number of relationships. 

For example, sprocket power density is shown at the given 

design point to be most sensitive to engine power density, 

and while much increase in minimum gear ratio could be 

detrimental to sprocket power density, any further reduction 

wouldn’t provide much gain. This is likely due to the effect 

of gear limiting on top speed.  

Figure 1: Dynamic Sensitivities Tool 
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Figure 2: Key Objective Trends vs. Engine Power 

Density and Max Engine Power 

Another common visualization method is the parametric, 

interactive contour profiler (not shown) [7]. This 

visualization shows the design space in two dimensions as 

defined by any two input parameters, with the other 

parameters fixed. Shaded contours are then drawn in the 

design space indicating regions of the design space that are 

not feasible with respect to a given constraint of objective. 

This allows designers to understand the interactions of 

various constraints and where feasible design space lies with 

respect to design parameters. 

These approaches can be combined with traditional 

visualizations that might only be able to provide limited 

information in a multi-dimensional problem before they 

become too hard to quickly interpret. Figure 2 shows the 

relationships of several key objectives as engine power 

density is varied. Multiple lines are shown that represent 

high and low maximum engine power. The improvement of 

Figure 3: Example Filtered Scatterplot Matrix 
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the illustrated objectives can be seen with increased power 

density, but the rate of improvement is also seen to decrease. 

The core design space was also characterized using simple 

probabilistic design methods in order to try and better 

understand how the design goals relate to the available 

design space. A number of techniques are available to 

facilitate this approach, including fast probability integration 

[16] and Bayesian approaches [17], but given the scale of the 

problem and the development of surrogates, a simple Monte 

Carlo Simulation was sufficient. The surrogate models were 

used to generate 10,000 pseudo-random cases using uniform 

distributions for each of the design parameters.  

One potential method of visualizing the design space 

across objective and constraint dimensions enabled by 

Monte Carlo Simulation is the scatterplot matrix. With 

filtering, this analysis can be used with a so-called “inverse 

design” technique to slowly draw back constraint values and 

goals to identify a limited number of feasible options that the 

decision makers can more easily understand.  

An example of this technique is illustrated in Figure 3, 

where each objective goal was interactively varied to show 

regions of the design space that met all goals 

simultaneously. The scatterplot matrix shows solutions (in 

green) that meet just the two goals corresponding to each 

individual subplot, as well as those (in blue) that meet all 

eight goals. This clearly illustrates the inherent difficulty of 

understanding the design space in higher dimensions that 

cannot be conventionally visualized. In order to find 

solutions that were feasible across all objectives in Figure 3, 

some of the goals from Table 2 had to be significantly 

relaxed. This is an early indication that the desired designs 

may not be feasible given the limitations of the design 

parameters in the problem. 

Each constraint and objective can also be assessed with 

respect to its likelihood of meeting a given value. In 

probabilistic design this is accomplished through the 

generation of either a cumulative distribution function 

(CDF) or a probability density function (PDF) for each 

design objective or constraint. These distributions represent 

the feasible design space by illustrating the possible 

outcomes of every potential combination of design variables 

[16]. These results can immediately identify areas of 

concern, showing goals and constraints with little to no 

likelihood of being met, and driving high level decisions 

(e.g. relaxation of requirements, concept re-design, or 

pursuit of advanced technology).  

The CDFs generated for the advanced powertrain 

demonstration integration in this exercise immediately show 

several potential impediments in the system design. Figure 4 

shows example CDFs for vehicle weight and fuel economy 

at 50mph. No feasible designs were found with weights 

below the desired threshold goal, illustrated by the 

corresponding 0% chance of success indicated by the CDF. 

This primarily is due to the minimum limits imposed on the 

non-powertrain volume. This indicates that even at their 

most favorable extremes with respect to only vehicle weight, 

the available design parameters did not have large enough 

ranges to produce a design with a low enough weight. On 

the fuel economy at 50 mph CDF, the goal has roughly a 

0.37 chance of success as only 37% of the designs identified 

meet this individual goal.  

Figure 5: Joint Probability Distribution for Sprocket 

Power Density and Fuel Economy at 50 mph 

Figure 4: CDFs for Weight and Fuel Economy at 

50mph 
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These methods only indicate the performance of a single 

objective, however and a design is only considered feasible 

if it performs adequately with respect to all constraints and 

objectives. The 37% of the design space that meet the shown 

fuel economy goal may not be the same designs that meet or 

exceed other objectives. Joint distributions, such as the one 

shown in Figure 5 can quickly be generated with the Monte 

Carlo data to illustrate feasible designs in multiple 

dimensions. With filtering, the designs in areas of interest 

can then be more closely investigated.  

It was clear that the primary design parameters did not 

provide a feasible design space capable of meeting the 

threshold goals, and decisions had to be made as to how to 

proceed with the design. A second DOE was run, but this 

time the other parameters in Table 2 were also varied. A 

more complicated design problem with numerous 

technology factors or requirements might require more 

complicated approaches [18], such as fixing the design 

parameters to run a separate DOE, but the limited number of 

total parameters allowed for modeling through an inclusive 

experiment. New kriging surrogate models were then 

developed using the second DOE to model the objectives 

based on all ten of the listed parameters.  

With only two technology factors available in the design 

problem, analysis of technologies was a simple process. 

More complicated design problems may include discrete 

technology options with fixed projected improvements (or 

detriments) to given system attributes. These often require 

more complex analysis and selection methods [19]. Here, 

both technology factors could simply be varied to 

understand their effect on the design. Figure 7 shows the 

effect of varying the technology factor to represent both a 

weight and volume reduction in the transmission (factors 

were varied simultaneously for maximum effect). As shown, 

while the probability of lower weight vehicles is shifted 

slightly, it still does not meet the desired goal.   

With the limited technology factors and their small effect 

on the objectives that did not reach goals, the last step was to 

look at potential reductions to requirements. Payload 

Volume has a direct effect on vehicle weight, shifting the 

potential design space in favor of lower weights by reducing 

the volume as shown in Figure 6, as well as desired effects 

on other performance parameters. However it should be 

noted that none of the technology factors or requirements 

had any substantial effect on tactical idle fuel efficiency, due 

largely to the fixed load and rpm. For the final optimization 

the vehicle payload volume was reduced by 10%, and both 

transmission technology factors were set to 0.9. This ensured 

that each objective could be met individually, but that 

finding design candidates to meet all objectives 

simultaneously would be difficult. 

 

Optimization 
Optimization is another core element of MDAO and can 

also be used as part of a design space exploration. Though 

less common than their single-objective counterparts, a 

number of multi-objective optimization methods exist. 

Appropriate methods are generally selected based on the 

nature of the problem, the type of design parameters, and 

how the designers rank or weight the objectives.  While 

mathematically characterizing the surrogate models is 
Figure 7: Effect of Transmission Technology Gains on 

Vehicle Weight 

Figure 6: Effect of Payload Volume on Vehicle 

Weight and Fuel Economy 
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possible for the Kriging models used, it was desired to check 

and potentially improve the fits of the models as our 

optimization progressed to ensure an accurate process. The 

problem was also expected to expand to include some 

discrete parameters in future work, likely focused on 

selecting shift strategy and determining module cooling 

architectures. For these reasons a genetic algorithm method 

was utilized here.  

The Nondominated Sorting Genetic Algorithm II (NSGA-

II), first developed by Deb [8], is a popular means of 

addressing problems with multiple objectives and constraints 

to develop a large set of Pareto-optimal solutions. The 

NSGA-II maintains independence between objectives rather 

than combine them into a single fitness function. All 

potential candidates are sorted into a hierarchy of fronts 

based on Pareto dominance (rank), as well as assessed for 

their relative distance in the objective space to other 

candidates along each frontier (crowding distance). 

Candidate solutions are then sorted and selected based on 

having the best Pareto rank and being in the least crowded 

regions. This promotes the survival of a diverse set of Pareto 

optimal solutions. 

The specific goals or preferences between objectives are 

not numerically considered during this particular multi-

objective optimization process. By trying to find a Pareto set 

of alternatives, the designer can view a subset of design 

alternatives that would have the best chance of meeting all 

the goals simultaneously. If a perfect solution doesn’t exist 

on the Pareto frontier, it would not exist in a dominated 

design region. 

A number of approaches have been proposed for 

integrating surrogate models into the optimization process to 

relieve the computational expense of costly modeling and 

simulation [20-22]. A simplistic semi-adaptive approach was 

used in this case, utilizing the Kriging surrogates to reduce 

the time of calculating each population’s fitness values, with 

the full optimization procedure in Figure 8. After each 

generation, a sample of points along the best identified 

frontier was selected for validation against the original 

Simulink® simulation. If any of these points had an 

objective with validation error greater than a given 

threshold, that point was then screened for validity and 

added to the fitting data. Surrogates were then refit to the 

new data after each generation and validated against a 

sample of the combined data. If the fit for a given objective 

was improved, the Surrogate models were then updated to 

the new models to be used in future generations of the 

NSGA.  

The approach is a relatively simple, but effective one. 

More complicated methods to take advantage of surrogate 

modeling with various optimization techniques are 

becoming more common in MDAO [23]. Some more 

advanced methods that might be advantageous in very non-

linear design take advantage of iterative localized surrogate 

modeling or combine heuristics like genetic algorithms with 

local gradient-based techniques [24].  

The optimization was run for a fixed 50 generations, with a 

population of 70 and mutation and crossover rates at 0.025 

and 0.65 respectively. After each generation 5 identified 

Pareto points were randomly selected for the validation step. 

A fixed validation portion of 20% was utilized with all the 

available data and several fitting and validation metrics were 

tracked for each surrogate. The decision was made to update 

the surrogate models only if the normalized root mean 

squared error (RMSE) improved after fitting following each 

generation. These decisions were made specifically to try 

and improve performance of the surrogates and NSGA for 

this application, while other problems might require other 

customized tuning or other adjustments.  
Figure 9: Example Objective Progress for Optimization 

Figure 8: Surrogate Enabled Optimization  
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Figure 10 shows the progress of the NSGA by plotting 

each member of the Pareto frontier for each generation. 

Progress is often difficult to visualize in higher dimensions 

this way, but shifts towards better solution can clearly be 

seen for some objectives, as well as the distribution against 

each goal value (drawn in red). The algorithm also was 

forced to compromise several objectives to achieve non-

dominated results with respect to other objectives. Some 

examples of this are also shown in Figure 9, where 

population averages steadily decrease for fuel economy and 

max incline speed as their best solutions in those dimensions 

are dominated in other dimensions by new candidates.  

This effect could potentially be eliminated in future 

implementations of the optimization by creating a fitness 

function that emphasizes satisficing threshold goals for 

multiple constraints of objectives without rewarding 

candidates for over-achieving in a single dimension.  

The final population of the NSGA was sorted to check for 

design candidates that met all of the objectives. Seven 

specific design candidates that met all the other objective 

goals simultaneously were found, and these candidates are 

indicated in Figure 10. It appears from the progress of the 

optimization that more candidates may have been found had 

the optimization been run for a longer time. These 

candidates were also validated using the original simulation, 

with all surrogated objectives showing errors below 5%, 

except maximum 60% incline speed, where predictions of 

low speeds resulted in small absolute errors that were larger 

in relative terms.  

 

Conclusions 
Using a representative dynamic simulation model of a 

powertrain system for a ground vehicle, this paper has 

explored a selection of MDAO tools and methods for design 

exploration and optimization. In order to achieve the 

accuracy of powertrain system analysis desired, a 

significantly complex and computationally expensive 

simulation model is required. Leveraging surrogate 

modeling allows for quick visualization and interactive 

exploration of the design space. This provides an efficient 

means to explore and understand a complicated multi-

dimensional design space, limiting time consuming 

simulation runs. Probabilistic tools were also included to 

provide a simple example of characterizing the feasibility of 

the problem. This approach also demonstrates how design 

feasibility and system effectiveness information can inform 

early system decisions with respect to requirements, 

concepts, and technology.  

The surrogate models were also utilized to perform a 

multi-objective optimization. This demonstrates a resource 

Figure 10: Optimization Progress Scatter Plot 
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efficient approach to finding a Pareto frontier of validated 

potential design candidates.  

This paper demonstrates a relatively simplistic example 

and application of a suite of helpful MDAO methods. 

Presenting how these tools might benefit such a simple 

problem, the path is paved for including MDAO earlier in 

the design process when more design and integration 

decisions are available. By integrating more subsystems and 

disciplines, and potentially including economic and mission 

effectiveness models early in conceptual design, MDAO 

approaches can provide increased benefits for overall system 

value. Additionally, inclusion of more system-wide 

technology factors and potentially a suite of specific 

technologies, return on investment for specific technologies 

can be forecasted. This process can be, and has been, used to 

drive decisions about technology investment and the 

feasibility of future system requirements. 
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